Contrôle d'informatique

Durée: 1 heure

Étant donnée une fonction $f:[u,v]\to\mathbb{R}$ de classe \mathscr{C}^1 , on souhaite approcher la quantité $\int_u^v f(t) \,\mathrm{d}t$ par l'expression

$$I(f) = \lambda_0 f(u) + \lambda_1 f'(u) + \lambda_2 f'(\xi)$$

οù ξ ∈]u,v[et λ_0 , λ_1 , λ_2 sont des réels pour l'instant non encore déterminés.

On définit l'erreur de la méthode en posant : $E(f) = \int_{t}^{v} f(t) dt - I(f)$.

Question 1. Déterminer les paramètres ξ , λ_0 , λ_1 , λ_2 pour que la formule d'approximation soit exacte pour toute fonction polynomiale de degré inférieur ou égal à 3.

On pourra observer qu'il faut et il suffit que cette formule soit exacte pour les fonctions polynomiales $x \mapsto 1$, $x \mapsto (x - u)$, $x \mapsto (x - u)^2$ et $x \mapsto (x - u)^3$.

Question 2. Les paramètres ξ , λ_0 , λ_1 et λ_2 étant ainsi fixés, calculer E(f) pour $f: x \mapsto (x-u)^4$ et en déduire l'ordre de la méthode.

Question 3. On admet l'existence d'un unique polynôme P_f de degré inférieur ou égal à 3 vérifiant les relations :

$$\mathrm{P}_f(u)=f(u), \qquad \mathrm{P}_f'(u)=f'(u), \qquad \mathrm{P}_f(\xi)=f(\xi), \qquad \mathrm{P}_f'(\xi)=f'(\xi).$$

Montrer que $E(f) = \int_{u}^{v} (f(t) - P_f(t)) dt$.

Question 4. Dans cette question on suppose le réel t fixé dans $|u,v| \setminus \{\xi\}$ et on pose

$$\varphi(x) = f(x) - P_f(x) - K \frac{(x-u)^2 (x-\xi)^2}{24}$$

le réel K étant choisi pour vérifier l'égalité $\varphi(t) = 0$.

Montrer que si f est de classe \mathscr{C}^4 il existe un réel $c \in]u,v[$ tel que $K = f^{(4)}(c)$.

Question 5. On suppose toujours f de classe \mathscr{C}^4 sur le segment [u,v] et on note M_4 un majorant de $|f^{(4)}|$ sur cet intervalle.

Déduire de la question précédente que $|E(f)| \le \frac{M_4}{720}(v-u)^5$.

Question 6. Donner l'expression de la méthode composite attachée à cette méthode de quadrature, et donner une majoration de l'erreur pour une fonction f de classe \mathscr{C}^4 sur [a,b] lorsque cet intervalle est subdivisé en n sous-intervalles.

Question 7. Rédiger enfin en Python une fonction integral qui applique cette méthode composite pour retourner une valeur approchée de l'intégrale de f sur [a,b]. On justifiera le choix des arguments de cette fonction.